If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+144x+576=0
a = 7; b = 144; c = +576;
Δ = b2-4ac
Δ = 1442-4·7·576
Δ = 4608
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4608}=\sqrt{2304*2}=\sqrt{2304}*\sqrt{2}=48\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(144)-48\sqrt{2}}{2*7}=\frac{-144-48\sqrt{2}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(144)+48\sqrt{2}}{2*7}=\frac{-144+48\sqrt{2}}{14} $
| 3.5n=1416 | | 4. x2–12x+11=0 | | –98=7t | | 7x+2=9x-7 | | 42/3x=5,25 | | 4d+4=2d+12 | | 7v=12+5v | | 36-3v=v | | 2x-12=10x-4 | | 128x^2=200 | | 5x+9=3x+45= | | 3^(x+1)*9^(x)=27 | | b/12+2=3 | | x/10+8=18 | | 7x+12=5x−8 | | 12n-16=8n+12 | | 32x-768=0 | | 102/3=r+1216 | | 12x-5=3x-4 | | 4x+37=x+13 | | x+7=233 | | 9(u-2)+1.54=8.25 | | 6x=282-2x | | 9=5=2z | | 3/4x=x1/3 | | 11/3=3/4x | | 7x-5/2=12 | | -9x^2-9x+3=0 | | 17x+-7x-16=10x-16 | | |4x|=13.2 | | 3/4x=1.33 | | 66=6*(x^2) |